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LElTER TO THE EDITOR 

Current algebra, AKS theorem and new super evolution 
equations 

A Roy Chowdhury and Partha Guha  
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta a-700 
032, India 

Received 4 April 1990 

Abstract. We have deduced a new class of integrable super evolution equations by using 
a supersymmetric version of the A K S  ( Adler-Kostant-Sym) theorem in conjunction with 
the homogeneous space reduction technique of Marshall and current algebra of Samenov- 
Tian-Shansky. 

In recent years Lie algebraic techniques have been extensively used to study the 
properties of nodinear  integrable evolution equations [ 11. After the initial study, using 
Lie algebra to deduce the Backlund transformation [2] and an exact solution of 
integrable systems, there have been various ingenious variations to extend the integrable 
class. One  such approach was the introduction of homogeneous space [3], and  another 
was to use supersymmetric Lie algebra [4]. 

In this respect the same type of development took place in both cases of dynamical 
systems and  evolution equations. In a recent communication Marshall [5] has shown 
that a homogeneous space reduction technique along with the use of the famous 
Adler- Kostant-Symes ( AKS) theorem can lead to new integrable dynamical systems. 
Here in this communication we have generalised Marshall's approach in two ways. 
On the one  hand we have considered a super-extension of the A K S  theorem and on 
the other hand, instead of usual algebra, we have used the current algebraic structure 
with cocycles first put forward by Rieman-Tian-Shansky [6]. The super evolution 
equations that we generate are new. 

Let g be a finite-dimensional Lie algebra [7] and 

g = g o o g ,  

[ x, Y] = X Y  - ( - 1 ) d '  X )d '  y ,  Y X  

be a Z2 graded decomposition of g, with a Lie bracket (super), 

where 

d ( X )  = o  
d ( X )  = 1 

for X E go 

for X E g, . 
On g, we define a non-degenerate bilinear form ( , ): some mapping g x g + C, such 
that ( X ,  Y) = 0, if X E go and Y E  g, and  

( X ,  y) = ( - 1 ) d ' X ' d ' Y '  ( y, X ) .  
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On the other hand we can consider g to be of the form 
g = g”’ 

J E Z  

and 
X‘” X.AJ E gcJ )  ( 3 )  

to be the elements of a loop algebra, whence we write 

g = g+ + g-.  (4) 

Let us consider now g* = g OR, if ( x ,  a )  E g* with x E g and a ER; the composition 
rule is given by [8] 

On g* we define a degenerate bilinear form 

((x, a ) ,  ( y ,  b ) )  = ab + str X Y  dx I 
with the property 

( ( Y ,  b)(x ,  a ) ) .  d ( X ! d (  Y !  ( ( 4  a ) ,  (Y, 6)) = (-1) 

Now if we assume that g breaks up into affine Lie algebras of the form (4), then the 
pairing is defined by 

(7 )  

Let us now consider a two-dimensional cocycle of g over R which is defined to be 
a smooth function f; such that [9] 

f : G x G + R  (8) 
where G is the Lie group corresponding to the Lie algebra g.  This function possesses 
the properties that 

f ( x ,  e) =f(e, x )  = 0 

A Y ,  z )  - f ( x y ,  z )  + f ( x ,  Y Z )  - A x ,  Y )  = 0 

e =identity of G (9) 

(10) 

and 

for any three x, y ,  t E G. 
Now corresponding to the Lie algebra 

g* = g 0 R  

we have the manifold M, 
M=GOR 

where the multiplication of any two elements is defined as 
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for V a ,  b E R; x, y, EG. The inverse is defined via 

(a ,  x)- '  = ( - a  -f(x, x- ' ) ,  x-') 

so that (a ,  x)(a,  x)-' = (0, e ) .  All elements of the form (a ,  e )  constitute a subgroup A 
which is isomorphic to the group R and is in the centre of the group G. 

We now analyse in detail the connection between the Lie algebra and Lie group 
defined above via exponential mappings. 

exp :g+G.  

If a E R  and x c g  then 

exp( a, x)  = (a ,  exp x). 

In particular we see that the one-parameter subgroup t + /3(o,x,( t )  of M corresponding 
to an element (a ,  x)  of h is given by 

/ 3 ( 0 , X l ( t )  = ( to ,  P x ( t ) ) .  (14) 

Now from equation ( l l ) ,  we can deduce 

[ (a ,  XI, (b ,  y ) l =  ( W(X, Y), x, Y )  (15)  

with W(x, Y )  =f (x ,  Y )  - f (y ,  x). 
The basics of nonlinear equations are embedded in the adjoint and co-adjoint of 

Lie groups over g. In general adjoint action of G over g is given by Y x Y-' where 
Y E G  and XEg .  Now on M z R x G ,  we get 

adj gY=-[(ta,e'")( Y,O) ( - ta - f ( e ' " , e - ' " ) , e~ ' " ) ] , , ,  d 
d t  

= ( fO(x ,  Y )  -fO(y, x),  [x, Y l )  (16) 

where, fo(x,  y)  =f(exp X, exp Y), X, Y E  g. So the adjoint action is defined via the 
cocycle term. In particular, as per our defining relations (1 l) ,  we take the cocycle term 
to be 

W(x, y)  = str XY' dx'. f 
Now the operator ad* of the co-adjoint action is determined via the equality 

where the braces denote the scalar product defined in (6), whence we get 

((U, c), ([x, y], [ str XY'dx))  = c [ str XY'+str [ (uxy- uyx) dx 

so immediately we get 
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which is the basis of the current algebra approach to Lax equations as advocated by 
Reyman and Semenovtian-Shansky. The nonlinear equations are then determined via 
the Hamiltonians determined via the ad-invariant functions over the Lie group. I t  is 
to be noted that the decomposition given in (4) gives an orthogonal decomposition in 
the sense that 

g = K + N  where N *  = K 

and 

K = g '  N = g -  with[K, K']E K'. 

Following Marshall, we now define subspace, A , ,  via 

p , ~ & p , = O  f o r j < r  o r j > s  

Then we have 

N = g n  A-, - 1 

K = n 

On the other hand for any Lie algebra g = h + m such that h is an Abelian part then 
[h ,  h ] c  h ;  [ h ,  m ] ~  m. 

As per the general construction of Adler, the ad-invariant form on the affine algebra 
is given as 

(22)  

(23) 

y = A A ~  + Q A ~ - ' +  wp-? 

H (  y )  = -fstr(  y2,  A - " + ' )  

with 0 E m, Wp-? E then the Hamiltonian is given as 

whence we get 
V H = - y A - P + ' .  

so 

Y =  - [ n , ( - ~ h - ~ + ' ) ,  Y I - ( ~ ( - ( Y A  - " + ' ) ) y )  

where Ilk is the projection onto the K-space. 
Let us denote 

2 = I l k  (yA-" ' )  

= n, (AA + Q + Wp-2A - ' - I )  

so, 

? = (AA + Q )  li + [AA + 0, rl. 

Y = A A * + Q A + W .  

t = C,(A) ={BE g ,  [ A ,  B] = 0). 

As a particular case we consider p = 2 ,  so that 

Let us now consider an element A E  h and construct the subgroup: 

The g can be written as g = t + m, so that 

It, t1C t [ t ,  m ] ~  m. 
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Let us take an element 

with A E I 
A 

a = A’A+- 
( n  + I ) ’  

and evaluate 

We then renew [ A , p , ] = Q  and P=[A,p,]+;[Q,P,] .  Now in the case of 
Su(n + 1)-type Lie algebra 

A=id iag (n , -1 , -1 ,  . . . ,  -1) 

and we denote the subspaces of Q corresponding to eigenvalues i( n + 1) and -i( n + 1) 
of adA as Q+, and Q- . We can then rewrite M as 

Substituting into equation (26), we get, by equating the coefficients of various powers 
of A, 

A’: [Q,A]+[A,  Q]=O 

Since A E t ;  [ Q-,  Q+] E t and hence 

[A,[Q-, Q + l l = O  

Q = [A, PI 

which, in dependent terms, yields 

or we get 

- 1  . P =  P++ P- =- (Q+- Q-) 
n + l  

where we write Q = Q+ + Q- whence y is finally written as 

{ n + l  ( n + l ) ’  A 1. 1 
Y = A’A + QA + - (Q+ - Q-) -- [ 0- ,9+3 +- 

(33) 

(34) 



L644 Letter to the Editor 

To give an explicit example of a nonlinear equation we now specialise our system 
to the simplest supergroup SL(2, l ) ,  in which case Q may be written as 

A =  0 A0 0 .  (35) (Y :) c; :;’ :) and 
Q =  -a  0 f 2  

With this form of Q we now evaluate both sides of equation (26) whence we get 

ii = i( n + 1 )a, - 2a I a 1’ - aflf, + af2fz +fzfl + j2f1 - i( n + 1 ) a  ( An - A-) 

fl = i( n + 1 )fl -f, I a 1’ +f2f2f1 - bf2 + f z u  - i (  n + 1 )(A - A-)fl (36) 

f2 = i( n + 1 )fix + f 2 1  a 1’ - (f,fl)fz - u*fl -fl a* - i-( n + 1 )( - A,)f,. 

In the above we denote the time derivatives by a dot, i.e. f = d f / d t .  These are an 
example of a new class of nonlinear integrable equations in two dimensions containing 
super variables. 

In the analysis described above we have shown how the supersymmetric version 
of the AKS theorem can be used in conjunction with the homogeneous space reduction 
technique of Marshall to generate a coupled set of nonlinear integrable system which 
is supersymmetric. 
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